Effective and Scalable Solutions for Mixed and Split Citation Problems in Digital Libraries

Dongwon Lee, Byung-Won On Penn State University, USA

PENNSTATE

Jaewoo Kang North Carolina State University, USA

> Sanghyun Park Yonsei University, KOREA

Outline

- Motivation
- Mixed Citation (MC) Problem
- Split Citation (SC) Problem
 - Problem Definition
 - Our approach
 - Preliminary Experimentation
- Summary

Motivation

- Digital Libraries (DL) often have many errors that negatively affect:
 - Quality of DL
 - Query results
 - User experiences
 - Bibliometric research
 - ...
- We present 2 specific problems that often occur in *scientific literature* DL

Eg. 1: DBLP

Dongwon LeeDifferent authors' citations are "mixed"List of publications from the DBJunder the same name heading

Coauthor Index - Ask others: A

Mixed Citation (MC) Problem

30 EE Seog-Chan Oh, Byung-won On, Enc.J. Larson, Dongwon Lee. Br. Web Services Discovery and Composition as Graph Search Problem. EEE 2005: 784-786

29 EE Dongwon Lee, Wenlei Mao, Henry Chiu, Wesley W. Chu: Designing Triggers with Trigger-By-Example. Knowl. Inf. Syst. 7(1): 110-134 (2005)

2004

- 28 <u>Alberto H. F. Laender</u>, Dongwon Lee, <u>Marc Ronthaler</u>: Sixth ACM CIKM International Workshop on Web Information and Data Management (WIDM 2004), Washington, DC, USA, November 12-13, 2004 <u>ACM 2004</u>
- 27 EE Bo Luo, Dongwon Lee, Wang-Chien Lee, Peng Liu: QFilter: fine-grained run-time XML access control via NFA-based query rewriting. CIKM 2004: 543-552

26 EE Dongwon Lee, Divesh Srivastava: Counting Relaxed Twig Matches in a Tree. DASFAA 2004: 88-99

25 EE Yoojin Hong, Byung-Won On, Dongwon Lee: System Support for Name Authority Control Problem in Digital Libraries: OpenDBLP Approach. ECDL 2004: 134-144

24 EE Robert J. Kauffman, Dongwon Lee: Should We Expect Less Price Rigidity in the Digital Economy? HICSS 2004

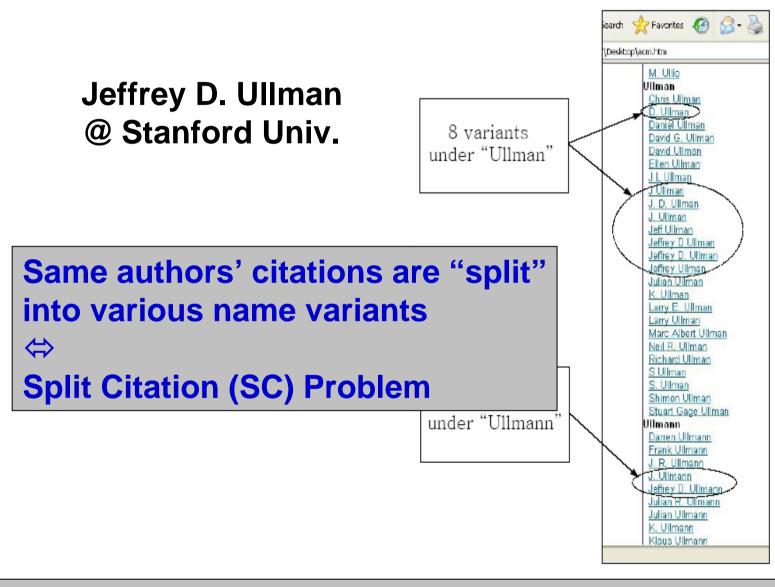
24 Hk Brung Won On, Dongtion Lee: VaSk: Locating Online Copy of Scientific Documents Attestively ICADL 200/: 2022 2022

Robert J. Kauffman, Dongwon Lee: Price Rigidity on the Internet: New Evidence from the Online Bookselling Industry. ICIS 2004: 843-848

21 <u>BB</u> Bo Luo, Dongwon Lee, <u>Wang-Chien Lee</u>, <u>Peng Liu</u>: A Flexible Framework for Architecting XML Access Control Enforcement Mechanisms. <u>Secure Data</u> <u>Management 2004</u>: 133-147

2003

20 EE Dongwon Lee. Wang-Chien Lee. Peng Liu: Supporting XML Security Models Using Relational Databases: A Vision. Xsvm 2003: 267-281


1. Mixed Citation Problem

- Given a collection of citations (*C*) by an author (*a_i*), can we identify false citations by another author (*a_i*), when *a_i* and *a_j* have the identical name spellings (i.e., homonym)?
- Solution: Citation Labeling Algorithm
- Idea: for each citation in the collection, test if the citation really belongs to the given collection

Eg. 2: ACM DL Portal

2. Split Citation (SC) Problem

• Given two lists of author names, X and Y, for each author name $x (\in X)$, find a set of author names, $y_1, y_2, ..., y_n (\in Y)$ such that both x and $y_i (1 \le i \le n)$ are variants

2. Split Citation (SC) Problem

"tuple"

Given two lists of author names, X and Y, for each author name x (∈X), find a set of author names, y₁, y₂, ..., y_n (∈Y) such that both x and y_i (1 ≤ i ≤ n) are variants

= Database Join Problem

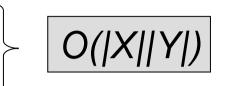
2. Split Citation (SC) Problem

"record"

Given two lists of author names, X and Y, for each author name x (∈X), find a set of author names, y₁, y₂, ..., y_n (∈Y) such that both x and y_i (1 ≤ i ≤ n) are variants

= Record Linkage Problem

Naïve Solution


- For each author name x in X
 - For each author name y in Y

If $x \sim y$, name variant !

• DB: Nested Loop Join

dist(x,y) < t

• RL: Pair-wise Record Match

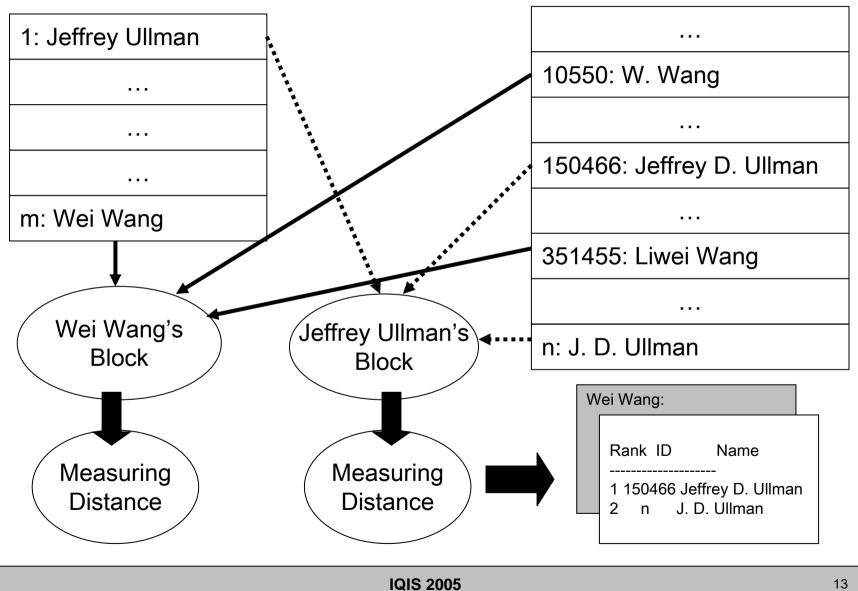
Challenge 1: Scalability

- O(|X||Y|) is too costly
- Solutions
 - DB: Hashed Join
 - RL: Blocking
- For each name x in X
 - Assign x to block $b (\in B)$
- For each name y in Y
 - Assign y to block $b (\in B)$
- For each block $b (\in B)$
 - Do naïve-solution

DL	Domain	Size (in M)	
ISI/SCI	General Sciences	25	
CAS	Chemistry	23	
Medline/ PubMed	Life Science	12	
CiteSeer	General Sciences/ Engineering	10	
arXiv	Physics/Math	0.3	
SPIRED HEP	Physics	0.5	
DBLP	CompSci	0.6	
CSB	CompSci	1.4	

O(|X|+|Y|+|B|a) << O(|X||Y|)

Challenge 2: Distance


- Diverse name variations
 - "Jeffrey D. Ullman" ⇔ "J. Ullman"
 - "Alon Y. Levy" ⇔ "Halevy, A."
 - "W. Wang" ⇔ "X. Wang"
 - "Sean Engelson" ⇔ "Shlomo Argamon"
- Solution
 - Look at additional information of the author names
 - Eg,

. . .

Coauthor list Keywords used in title Venues to submit Year Affiliation $\begin{aligned} dist(x,y) \sim & \\ & W_i^* dist(C(x), C(y)) + \\ & W_j^* dist(T(x), T(y)) + \\ & W_k^* dist(V(x), V(y)) \end{aligned}$

PENNSTATE

Name Disambiguation Algorithm

PENNSTATE

Step 1: Blocking

- Many blocking methods can be applied
 - Sorted Window
 - Token-based
 - N-gram
 - Sampling
- We applied Gravano (2003)'s samplingbased join approximation algorithm as a blocking method
 - Comparison with other blocking methods => JCDL 2005

Step 2: Measuring Distance

- Naïve Bayes Model
 - Use Bayes' Theorem to measure similarity between two names
- Support Vector Machine
 - Use SVM Classifiers
- String-based Distance Metrics
 - TFIDF/Jaccard (Token-based)
 - Jaro/JaroWinkler (Edit distances)
- Vector-based Cosine Distance
 - Cosine Similarity

Supervised
Un-supervised

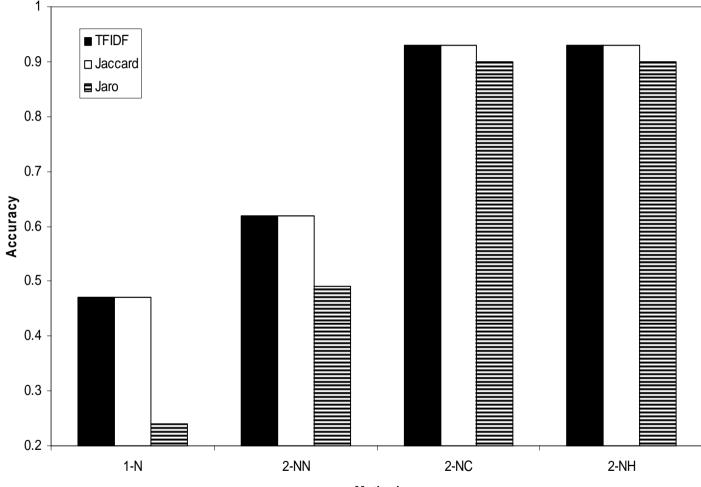
PENNSTATE

Policy Variations

Method		Step 1	Step 2
naive	1-N	—	name
two-step name-name	2-NN	name	name
two-step name-coauthor	2-NC	name	coauthor
two-step name-hybrid	2-NH	name	hybrid
		1	1
	Distance		

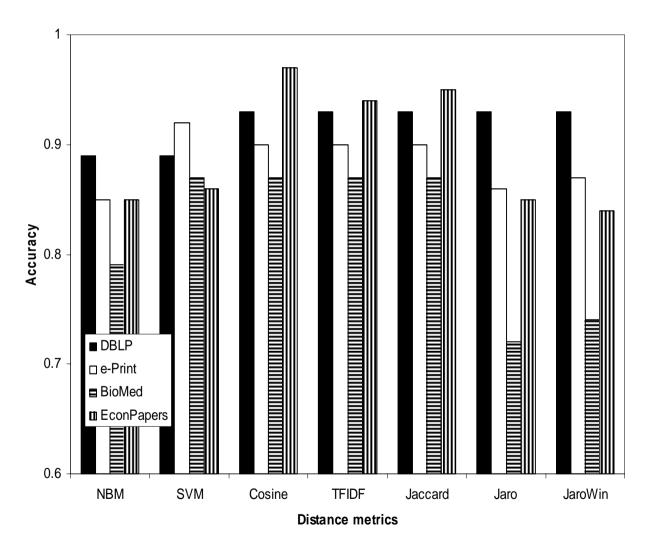
Data set	Domain	# of authors/	# of coauthors per author	# of tokens in coauthors per author
		# of citations	(avg/med/std-dev)	(avg/med/std-dev)
DBLP	CompSci	364,377/562,978	4.9/2/7.8	11.5/6/18
e-Print	Physics	94,172/156,627	12.9/4/33.9	33.4/12/98.3
BioMed	Medical	24,098/6,169	6.1/4/4.8	13.7/12/11.0
EconPapers	Economics	$18,\!399/20,\!486$	1.5/1/1.6	3.7/3/4.1

Configuration (eg, DBLP case)


- Authors, x, in X and authors, y, in Y
- Prepare an artificial name variant x' for K randomlychosen x (eg, K=100):
 - Abbreviation of the first name (85%): "Ji-Woo K. Li" \rightarrow "J. K. Li"
 - Typo (15%): "Ji-Woo K. Li" → "Ji-Woo K. Lee"
 - x' carries half of x's original citations
 - x carries the other half
 - Inject all x' into Y
- Test: "for each author x in X, fil name variants x' in Y"
- Evaluation metrics
 - Time
 - Accuracy

Varying error types gave consistent results. For instance,

Name Abbreviation: 30%
Name Alternation: 30%
First Name Misspelling: 12%
Last Name Misspelling: 12%
Contraction: 2%
Middle Name Initial Omission: 4%
Combination: 10%


SC: Accuracy (DBLP)

Method

SC: Accuracy (All data sets)

PENNSTATE

Related Work

- Identity / Entity Matching
 - Database Join
 - Record Linkage
 - Merge / Purge
 - Ontology Matching
 - Graph Matching
 - • •
- Name Authority Control Problem in LIS
- Please see the paper for details

Future Work

- Using additional information of author name
 - Essentially, token comparison
- Better way: coauthor information as a Graph
 - Graph matching / partitioning
 - Sub-graph detection

Conclusion

- SC Problem
 - Using additional information (eg, coauthor) than name itself is better in distance measure
 - 2-NC/2-NH outperform 1-N/2-NN
 - SVM or Cosine shows the best accuracy (90-93%)